A Note on Torsion in Multiply-connected Sections

by Gautam Dasgupta, http://www.columbia.edu/~gd18; posted on January 9, 2012
In "Variational methods for the solution of problems of equilibrium and vibrations ${ }^{1}$ R. Courant developed and presented the most profound way to constructing numerical solutions in mathematical physics. A theoretical analysis of torsion for the multiply connected domains appeared in pages 6 and 7 with a numerical example in the Appendix, in pages 20 and 21. A derivation of $\int_{C_{i}} \frac{\partial u}{\partial n} d s$ is presented ${ }^{2}$ here for the following sketch:

Fig. 1

The St. Venant warping function $\psi(x, y)$ is the axial displacement profile for unit twist per axis length. Around a cavity, ψ should be continuous, so also Prandtl $\varphi(x, y)$, that is defined from $\psi+\sqrt{-1} \varphi$ to be analytic in the entire region ${ }^{3} A^{*}$, where:

$$
\begin{equation*}
\Delta u(x, y)=1, \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \quad \text { and }\left.u\right|_{(x, y) \in C_{i}}=c_{i} \text { with }\left.u\right|_{(x, y) \in C}=0 \tag{1}
\end{equation*}
$$

and φ on C is proportional to $\frac{1}{2}\left(x^{2}+y^{2}\right)$. Select the scaling factor λ so that:

$$
\begin{align*}
u= & \frac{\left(x^{2}+y^{2}\right)}{4}+\lambda \varphi ; \text { and }\left.u\right|_{C}=0 ; \text { recall: } \Delta \psi=\Delta \varphi=0 \text { and } \frac{\partial \psi}{\partial s}=-\frac{\partial \varphi}{\partial n} ; \tag{2}\\
\int_{C_{i}} \frac{\partial u}{\partial n} d s & =\lambda \int_{C_{i}} \frac{\partial \varphi}{\partial n} d s+\int_{C_{i}} \frac{\partial}{\partial n}\left(\frac{x^{2}+y^{2}}{4}\right) d s=\int_{C_{i}} \vec{n} \cdot \nabla\left(\frac{x^{2}+y^{2}}{4}\right) d s-\lambda \int_{C_{i}} \frac{\partial \psi}{\partial s} d s \\
& =\int_{A_{i}} \nabla \cdot \nabla\left(\frac{x^{2}+y^{2}}{4}\right) d A+0 \text { since } w, \psi \text { are continuos on } C_{i} \tag{3}\\
& =\int_{A_{i}} \Delta\left(\frac{x^{2}+y^{2}}{4}\right) d A=\int_{A_{i}} d A=A_{i} ; \text { hence: } \int_{C_{i}} \frac{\partial u}{\partial n} d s-A_{i}=0 \tag{4}
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ Source: Bull. Amer. Math. Soc. Volume 49, Number 1 (1943), 1-23
 ${ }^{2}$ the equation differs from Cournat's expression on page 7 that was indicated as $\int_{C_{i}} \frac{\partial u}{\partial n} d s+c_{i} A_{i}=0$
 ${ }^{3}$ a cavity C_{i} encloses an area A_{i} the area enclosed by C is A and, A^{*} is the complement of $\cup_{i} A_{i}$ in A

